The Effect of High-Intensity Interval Training on Testosterone, Growth Hormone, and Cortisol in Athletes: A Review
DOI:
https://doi.org/10.5281/zenodo.18071751Keywords:
Cortisol, Growth Hormone, High Intensity Interval Training, TestosteroneAbstract
High-intensity interval training, which has been used for more than a century to improve athletic performance, is an exercise method consisting of short bursts of high activity followed by low-intensity activities for recovery or rest. The endocrine system plays a key role in physiological adaptations in exercise by regulating anabolic and catabolic processes. The aim of this review is to compile existing information and contribute to the literature by examining in detail the changes that occur in testosterone, growth hormone and cortisol, hormones that play an important role in body metabolism, following high-intensity interval training in athletes. Different mechanisms play a role in post-exercise hormone level changes. The literature search was conducted in Turkish and English, using the electronic databases PubMed, Web of Science, and Google Scholar, with the keywords ‘high-intensity interval training’, ‘testosterone’, ‘growth hormone’, ‘cortisol’. The type, duration and intensity of exercise affect the performance of the athlete and the endocrine response. The level of testosterone, a metabolic-androgenic steroid hormone, increases after high-intensity interval training. The stress that arises because of exercise following high-intensity interval training plays a decisive role in cortisol levels. It is widely believed that growth hormone increases in athletes after high-intensity interval training. However, stress, fatigue, lack of sleep, and intense and prolonged exercise can also cause a decrease in growth hormone levels. All exercises result in physiological changes. These physiological changes in athletes must be considered when planning exercises correctly for maximum performance.
References
Akgül, M. Ş., Koz, M., Gürses, V. V., & Kürkçü, R. (2017). Yüksek şiddetli interval antrenman. Spormetre Beden Eğitimi ve Spor Bilimleri Dergisi, 15(2), 39-46.
Altınkök, M. (2015). Yüksek şiddetli interval antrenman uygulamalarının etki alanlarının incelenmesi. International Journal of Social Sciences and Education Research, 1(2), 463-475.
Atakan, M. M., Li, Y., Koşar, Ş. N., Turnagöl, H. H., & Yan, X. (2021). Evidence-based effects of high-intensity interval training on exercise capacity and health: A review with historical perspective. International journal of environmental research and public health, 18(13), 7201.
Athanasiou, N., Bogdanis, G. C., & Mastorakos, G. (2023). Endocrine responses of the stress system to different types of exercise. Reviews in Endocrine and Metabolic Disorders, 24(2), 251-266
Avazpour, S., FAZELL, K. J., Avazpour, K., &Mohseni, F. (2020). The effect of two types of high-intensity interval training on serum value of GH and IGF-1 in overweight nurses. Asian J Sports Med,11(4): e103135.
Aydin, C., Gokdemir, K., & Cicioglu, I. (2000). Aerobik ve Anaerobik Egzersiz Sonrasi insulin ve Glikoz Degerlerinin incelenmesi. Hacettepe J. of Sci, 11(1), 47-55.
Bamman, M. M., Shipp, J. R., Jiang, J., Gower, B. A., Hunter, G. R., Goodman, A., &Urban, R. J. (2001). Mechanical load increases muscle IGF-I and androgen receptor mRNA concentrations in humans. American journal of physiology-endocrinology and metabolism, 280(3), E383-E390.
Bilge, M., Yildirim, D. S., & Ersoz, G. (2021). Güncel yüksek şiddetli aralıklı antrenman (High Intensity Interval Training-HIIT) uygulamalarının kardiyovasküler-metabolik ve performans yanıtları: sistematik derleme. Türkiye Klinikleri Journal of Sports Sciences. doi: 10.5336/sportsci.2020-76417
Birzniece, V. (2019). Exercise and the growth hormone–insulin-like growth factor axis. Current Opinion in Endocrine and Metabolic Research, 9, 1-7.
Bonato, M., La Torre, A., Saresella, M., Marventano, I., Merati, G., Vitale, & J. A. (2017). Salivary cortisol concentration after high-intensity interval exercise: Time of day and chronotype effect. Chronobiology international, 34(6), 698-707. https://doi.org/10.1080/07420528.2017.1311336
Buchheit, M., Laursen, P. B. (2013). High-intensity interval training, solutions to the programming puzzle: Part I: cardiopulmonary emphasis. Sports medicine, 43(5), 313-338. doi: 10.1007/s40279-013-0029-x
Çalışkan, Ömer. (2025). Genç futbolcularda farklı dinlenme süreli yüksek şiddetli aralıklı antrenmanların vücut kompozisyonu, insülin, testoseron, leptin ve ghrelin hormonları üzerine etkisi. Selçuk Üniversitesi, Sağlık Bilimleri Enstitüsü, Doktora tezi.
Cao, M., Quan, M., & Zhuang, J. (2019). Effect of High-Intensity Interval Training versus Moderate-Intensity Continuous Training on Cardiorespiratory Fitness in Children and Adolescents: A Meta-Analysis. International journal of environmental research and public health, 16(9), 1533. https://doi.org/10.3390/ijerph16091533
Chen, Y., You, Y., Wei, M., Yang, P., Zhang, Q., Li, X., & Cao, Q. (2024). Exploration of physical activity, sedentary behavior and insulin level among short sleepers. Frontiers in Endocrinology,15, 1371682. doi:10.3389/fendo.2024.1371682
Civan, A., Özdemir, İ., Gencer, Y. G., & Durmaz, M. (2018). Egzersiz ve stres hormonları. Türkiye Spor Bilimleri Dergisi, 2(1), 1-14.
Coates, A. M., Joyner, M. J., Little, J. P., Jones, A. M., & Gibala, M. J. (2023). A perspective on high-intensity interval training for performance and health. Sports Medicine, 53(Suppl 1), 85-96. https://doi.org/10.1007/s40279-023-01938-6
Cofré-Bolados, C., Reuquen-López, P., Herrera-Valenzuela, T., Orihuela-Diaz, P., Garcia-Hermoso, A., & Hackney, A. C. (2019). Testosterone and Cortisol Responses to HIIT and Continuous Aerobic Exercise in Active Young Men. Sustainability, 11(21), 6069. https://doi.org/10.3390/su11216069
Dote‐Montero, M., Carneiro‐Barrera, A., Martinez‐Vizcaino, V., Ruiz, J. R., & Amaro‐Gahete, F. J. (2021). Acute effect of HIIT on testosterone and cortisol levels in healthy individuals: A systematic review and meta‐analysis. Scandinavian journal of medicine & science in sports, 31(9), 1722-1744. https://doi.org/10.1111/sms.13999
Eklund, E., Hellberg, A., Berglund, B., Brismar, K., & Hirschberg, A. L. (2021). IGF-I and IGFBP-1 in Relation to Body Composition and Physical Performance in Female Olympic Athletes. Frontiers in endocrinology, 12, 708421. https://doi.org/10.3389/fendo.2021.708421
El, S. N., Karakaya, S. (2022). Süt, İnsülin Benzeri Büyüme Faktörü (Igf-1) Ve Sağlik. Gıda, 47(6), 1140-1152.
Frystyk, J. A. N. (2010). Exercise and the growth hormone-insulin-like growth factor axis. Medicine and science in sports and exercise, 42(1), 58-66.
Gençoğlu, C., Akkuş, E. (2020). Egzersize tiroid hormon yanıtları. Medical Sciences, 15(3), 71-80. http://dx.doi.org/10.12739/NWSA.2020.15.3.1B0091
Ghasemi, E., Nayebifar, S. (2024). The effect of quercetin supplementation on the responses of sirtuin-1, brain-derived neurotrophic factor and insulin-like growth factor-1 to high intensity interval exercise and continuous exercise in female athletes. Journal of Sport & Exercise Physiology (JSEP)/Fīziyuluzhī-i Varzish va Fa̒āliyyat-i Badanī, 17(4).
Gultekin, F. (2017) İnsülin Direnci ve Klinik Önemi Insulin Resistance and Clinical Significance.
Hackney, A. C., Lane, A. R. (2015). Exercise and the regulation of endocrine hormones. Progress in molecular biology and translational science, 135, 293-311. https://doi.org/10.1016/bs.pmbts.2015.07.001
Han, J., Wu, Z., Zhan, S., Sheng, T., You, J., Yu, J., & Gu, Z. (2025). Biorhythm-mimicking growth hormone patch. Nature Materials, 1-12.
Hayes, L. D., Grace, F. M., Baker, J. S., & Sculthorpe, N. (2015). Exercise-induced responses in salivary testosterone, cortisol, and their ratios in men: a meta-analysis. Sports Medicine, 45(5), 713-726. doi:10.1007/s40279-015-0306-y
Herbert, P., Hayes, L. D., Sculthorpe, N., & Grace, F. M. (2017). High-intensity interval training (HIIT) increases insulin-like growth factor-I (IGF-I) in sedentary aging men but not masters’ athletes: an observational study. The Aging Male, 20(1), 54-59. https://doi.org/10.1152/ajpendo.00276.2014
Jimenez-Roldán, M. J., Sañudo Corrales, B., & Carrasco Páez, L. (2025). Effects of high-intensity interval training on executive functions and IGF-1 levels in sedentary young women: a randomized controlled trial. Frontiers in Sports and Active Living, 7, 1597171.
Kanaley, J. A., Weltman, J. Y., Veldhuis, J. D., Rogol, A. D., Hartman, M. L., & Weltman, A. (1997). Human growth hormone response to repeated bouts of aerobic exercise. Journal of Applied Physiology, 83(5): 1756–1761. https://doi.org/10.1152/jappl.1997.83.5.1756
Keleş, H. B., Tutar, M., & Kale, M. (2024). Optimum Performans Antrenmanı, Dairesel Kuvvet Antrenmanı ve Yüksek Şiddetli İnterval Antrenmanın Testosteron, Kortizol ve Büyüme Hormonuna Akut Etkilerinin İncelenmesi. Online Journal of Recreation & Sports, 13(2),133-140.
Kilian, Y., Engel, F., Wahl, P., Achtzehn, S., Sperlich, B., & Mester, J. (2016). Markers of biological stress in response to a single session of high-intensity interval training and high-volume training in young athletes. European journal of applied physiology, 116(11), 2177-2186. doi:10.1007/s00421-016-3467-y
Koca, H.B., Yıldırım, Y., Işık, Ö., Karagöz, Ş., Ersöz, Y., Yağmur, R., & Yıldırım, İ. (2023). Pre-Competition Body Weight, Hydration, and Stress Hormone Changes Among Wrestlers. International Journal of Physical Activity, Nutrition and Health, 1(1), 1-10
Kochańska-Dziurowicz, A. A., Janikowska, G., Bijak, A., Stanjek-Cichoracka, A., & Mazurek, U. (2015). The effect of maximal physical exercise on relationships between the growth hormone (GH) and insulin-like growth factor 1 (IGF-1) and transcriptional activity of CYP1A2 in young ice hockey players. The Journal of sports medicine and physical fitness, 55(3), 158–163.
Kraemer, W. J., Ratamess, N. A., Hymer, W. C., Nindl, B. C., & Fragala, M. S. (2020). Growth hormone (s), testosterone, insulin-like growth factors, and cortisol: roles and integration for cellular development and growth with exercise. Frontiers in endocrinology, 11;33. https://doi.org/10.3389/fendo.2020.00033
Mennitti, C., Farina, G., Imperatore, A., De Fonzo, G., Gentile, A., La Civita, E., ... & Scudiero, O. (2024). How does physical activity modulate hormone responses? Biomolecules, 14(11), 1418. https://doi.org/10.3390/biom14111418
Menz, V., Marterer, N., Amin, S. B., Faulhaber, M., Hansen, A. B., & Lawley, J. S. (2019). Functional vs. Running low-volume high-intensity interval training: Effects on VO2max and muscular endurance. Journal of sports science & medicine, 18(3), 497-504.
Mitat, K. O. Z., Mustafa, Ş. A., & Emine, A. (2016). Egzersizin endokrin sistem üzerine etkileri ve hormonal regülasyonlar. Turkiye Klinikleri J Physiother Rehabil-Special Topics, 2(1), 48-56.
Monje, C., Rada, I., Castro-Sepulveda, M., Peñailillo, L., Deldicque, L., Zbinden-Foncea, H. (2020). Effects of a high intensity interval session on mucosal immune function and salivary hormones in male and female endurance athletes. Journal of sports science & medicine, 19(2), 436-443.
Nurten, D. I. N. Ç., Yücel, S. B., & Taneli, F. (2012). Futbolcular Ve Sedanter Bireylerde Serum Igf-I, Igfbp-3 Ve Hscrp Düzeyleri. Spor Hekimliği Dergisi, 47(2), 059-066.
Öncen, S., Aydın, S. (2023) Egzersiz ve Büyüme Hormonu İlişkisi. Sporda Betimsel Çalışmalar;1 (12),85.
Öniz, M., Göçer, İ. (2021). Egzersizin Bazı Üreme Hormonları Üzerine Etkisinin İncelenmesi. Sivas Cumhuriyet Üniversitesi Spor Bilimleri Dergisi, 2(1), 24-44.
Öniz, M., Sarıtaş, N., & Şentürk, M. (2024). Effects of short-term high-intensity interval training on growth hormone, cortisol, and leptin levels. J. Men’s Health, 20, 51-61. http://doi.org/10.22514/jomh.2023.124
Peake, J. M., Tan, S. J., Markworth, J. F., Broadbent, J. A., Skinner, T. L., & Cameron-Smith, D. (2014). Metabolic and hormonal responses to isoenergetic high-intensity interval exercise and continuous moderate-intensity exercise. American Journal of Physiology-Endocrinology and Metabolism, 307(7), E539-E552.
Purnomo, E., Arovah, N., & Sumaryanto, S. (2023). Acute and adaptation effect of high-intensity interval training on testosterone, cortisol and performance among collegiate running athletes. Human Movement, 24(3), 131-138. https://doi.org/10.5114/hm.2023.125928
Riachy, R., McKinney, K., & Tuvdendorj, D. R. (2020). Various Factors May Modulate the Effect of Exercise on Testosterone Levels in Men. Journal of Functional Morphology and Kinesiology, 5(4), 81. https://doi.org/10.3390/jfmk5040081
Richter, E. A., Sylow, L., & Hargreaves, M. (2021). Interactions between insulin and exercise. Biochemical journal, 478(21), 3827-3846.
Russell-Jones, D. L., Umpleby, A. M., Hennessy, T., Bowes, S. B., Shojaee-Moradie, F., Hopkins, K. D., & Sonksen, P. H. (1994). Use of a leucine clamp to demonstrate that IGF-I actively stimulates protein synthesis in normal humans. American Journal of Physiology-Endocrinology and Metabolism, 267(4), E591-E598.
Şahin, M., Özdemir, S., Civan, A. H., Uzun, M. E., Çetin, T., & Pişkin, M. (2023). Acute Effect of Anaerobic Exercise on Cortisol, Growth and Testerone Hormone Levels. The Online Journal of Recreation and Sports, 12(4), 566-572. https://doi.org/10.22282/tojras.1306820
Sayyah, M., Vakili, Z., Ehtram, H., Sarbandi, F., & Amooyi, Z. (2019). Effects of aerobic exercise on testosterone and cortisol hormone of blood serum of sedentary male students. International Journal of Sport Studies for Health, 2(1), e87635. doi: 10.5812/intjssh.87635.
Sheykhlouvand, M., Arazi, H., Astorino, T. A., & Suzuki, K. (2022). Effects of a new form of resistance-type high-intensity interval training on cardiac structure, hemodynamics, and physiological and performance adaptations in well-trained kayak sprint athletes. Frontiers in Physiology, 13, 850768. https://doi.org/10.3389/fphys.2022.850768
Sheykhlouvand, M., Khalili, E., Agha-Alinejad, H., & Gharaat, M. (2016). Hormonal and physiological adaptations to high-intensity interval training in professional male canoe polo athletes. The Journal of Strength & Conditioning Research, 30(3), 859-866. doi: 10.1519/JSC.0000000000001161
Sholi, G. A., Ghanbarzadeh, M., Habibi, A., & Ranjbar, R. (2016). The effects of combined exercises intensity (aerobics-resistance) on plasma cortisol and testosterone levels in active males. International Journal of Basic Sciences in Medicine, 1(1), 18-24. doi: i 10.15171/ijbsm.2016.05
Soslu, R., Uysal, A., Devrilmez, M., Can Çuvalcıoğlu, İ., Doğan, A. A., Karaburgu, S., & Taş, M. (2023). Effects of high-intensity interval training program on pituartry function in basketball players: a randomized controlled trial. Frontiers in physiology, 14, 1219780. https://doi.org/10.3389/fphys.2023.1219780
Sylta, Ø., Tønnessen, E., Sandbakk, Ø., Hammarström, D., Danielsen, J., Skovereng, K., & Seiler, S. (2017). Effects of high-intensity training on physiological and hormonal adaptions in well-trained cyclists. Medicine & Science in Sports & Exercise. 49 (6), 1137-1146. doi: 10.1249/MSS.0000000000001214
Wideman, L., Weltman, J. Y., Hartman, M. L., Veldhuis, J. D., & Weltman, A. (2002). Growth hormone release during acute and chronic aerobic and resistance exercise: recent findings. Sports medicine, 32(15), 987-1004. https://doi.org/10.2165/00007256-200232150-00003
Wirth, A., Diehm, C., Mayer, H., Mörl, H., Vogel, I., Björntorp, P., & Schlierf, G. (1981). Plasma C-peptide and insulin in trained and untrained subjects. Journal of applied physiology: respiratory, environmental and exercise physiology, 50(1), 71–77. https://doi.org/10.1152/jappl.1981.50.1.71
Yıldırak, A., Erdoğan, R. (2024). Judoculara Uygulanan Yüksek Şiddetli İnterval Antrenmanın (Hııt) Biyokimyasal ve Fiziksel Parametrelere Etkisinin İncelenmesi. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi, 13(2), 926-937. https://doi.org/10.37989/gumussagbil.1410169
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 IJPANH

This work is licensed under a Creative Commons Attribution 4.0 International License.
